Chapter 07 <u>PERMUTATIONS, COMBINATIONS AND</u> <u>INTRODUCTION TO PROBABILITY</u>

PERMUTATIONS AND COMBINATIONS PORTION

1) If n is a positive integer then n ! =

A)
$$n(n+1)(n+2)....(n+n)$$

B) $n(n-1)(n-2)....3.2.1$
C) $\frac{n(n+1)}{2}$
D) $\frac{n(n-1)}{2}$

Answer:

2) If ${}^{n}P_{2} = 20$ then n =

В

- A) 4
- B) 6
- C) 5
- D) 10

Answer: C

3) ${}^{n}C_{r} =$

A)
$$\frac{n!}{(n-r)!}$$

B)
$$\frac{n!}{(n-r)!r!}$$

C)
$$\frac{n!}{r!}$$

D)
$$\frac{r!}{(n-r)!}$$

Answer: B

4)
$${}^{n}P_{r} =$$

A)
$$\frac{n!}{r!}$$

B) $\frac{r!}{(n-r)!}$
C) $\frac{n!}{(n-r)!}$
D) $\frac{n!}{(n-r)!r!}$

Answer:

5)
$${}^{n}P_{o} =$$

	B)	n 1	
	D)	0	~
Answer:			С
6)	^{10}I	$P_2 =$	
	A)	90	
	B)	10	
	C)	8	
	D)	80	
Answer:			А

A) n!

7) If
$${}^{n}C_{6} = {}^{n}C_{10}$$
 then n =

D

- A) 4
- B) 6
- C) 10
- D) 16
- Answer:
- 8) The number of words which can be formed out of the word "ASSASSINATION", when all the letters are used in each word are

A)
$$\begin{pmatrix} 13\\ 4,3,2,2,1,1 \end{pmatrix}$$

B) 13!
C) $\frac{4!}{13!}$
D) $\frac{13}{4!}$
Answer: A

9) The numbers of diagonals in ten sided figure is

A) 10
B)
$${}^{10}C_2$$

C) ${}^{10}C_2 - 10$
D) 45
Answer: C

10) The number of ways a hockey eleven can be selected out of 15 players if it includes a particular player.

A)
$${}^{15}C_{11}$$

B) ${}^{14}C_{11}$
C) ${}^{14}C_{10}$
D) ${}^{15}C_{10}$
Answer: C

11)
$${}^{5}P_{0} =$$

Prepared by: Faizan Ahmed

С

math.pgseducation.com

A)	5	A) ´	7
B)	0	B) í	7!
C)	15	C) 4	49
D)	1	D) :	59
Answer:	D	Answer:	В

- The number of possible permutations of the letters of the 18) 12) word, "ADDING" having two D'S together.
 - A) 5!
 - B) 3!
 - C) 4!
 - D) 25

А

С

Answer:

In how many ways can eight students be 13) arranged in a row.

- A) 7!
- B) 5!
- C) 8!

D) 4! Answer:

- 14) The number of words that can be formed from the letters of the word, "PAKPATTAN" are
 - A) 9!
 - B) ${}^{9}C_{7}$
 - ${}^{9}P_{7}$ C)

D

312121 Answer:

- 15) The number of words that can be formed from the letters of the word, "COMMITTEE" are
 - A) ${}^{9}P_{0}$ B) ${}^{9}C_{0}$ 9!

С

D) 9 Answer:

- The three digit numbers that can be formed from 0, 1, 2, 116) 3, 4, when no digit is repeated are
 - A) 48
 - B) 36
 - C) 24
- D) 10 Answer: А
- The number of distinct permutations from the letters of 17) the word, "ARTICLE" using all the letters are

B)	7!		
C)	49		
D)	59		
Answer:		В	

How many triangles can be formed by twelve points on a plane.

A) 220 B) 12! C) 1320 D) 100 Answer: Α

19) In how many ways can 6 deferent trees be planted in a circle of clockwise direction.

- A) 720
- B) 120

В

- C) 70
- D) 60 Answer:

20) Everybody in a room shakes hands with everybody else. The total number of handshakes is 66, then the total no of persons in the room is.

- A) 11 B) 15
- C) 13
- D) 12
- Answer: D

How many subsets of 4 elements can be 21) formed from the set $\{a,b,c,d,e\}$.

A) 5 B) 4 C) 0 D) None of these Answer: А n_D

22)
$$\frac{1}{r!} = \underline{\qquad}$$
A) n!. ⁿCr
B) ⁿCr
C) $\frac{(n-1)!}{r!}$
D) n!
Answer: B

 $\binom{n}{r-1} + \binom{n}{r} = \binom{n+1}{r}$, this rule was invented 23) by.

22)

	A) Euler	
	B) Archimedes	A) 8 D) 1/0
	C) Pascal	B) $1/8$
	D) none of these	D) $\frac{3}{8}$
Answei	r: C	Answer: B
	PROBABILITY PORTION	19) A coin is tossed once, the probability of getting a head & a tail is.
1)	For any event A	E) 0
	$\mathbf{F}(\mathbf{A}) < \mathbf{P}(\mathbf{A}) < 1$	F) $\frac{1}{2}$
	F) $-1 < P(A) < 1$	1) 4 1
	G) $-2 \le P(A) \le 2$	G) $\frac{1}{2}$
	H) $0 \le P(A) \le 2$	H) $\frac{1}{2}$
Answei	r: A	Answer: A
14)	A dia is called anea, the probability of getting	
14)	the number greater than 6 is.	20) Two coins are tossed together once, the probability of getting two head is.
	E) 2	1
	F) 1 C) 0.5	E) $\frac{1}{4}$
	H) 0	F) $\frac{1}{2}$
Answei	r: D	2
		$G = \frac{1}{8}$
15)	Two dies are rolled once, the probability of obtaining the same faces (or whose difference is	H) 0 Answer: C
	zero) is.	21) Teams A & B are playing football match. The
	A) $\frac{1}{3}$	probability that A will win is 4/13 that of B is 5/13. The probability that the match will end in a draw is
	B) $\frac{1}{\epsilon}$	A) 5/13
	6 5	B) 4/13
	$C) = \frac{1}{6}$	C) 9/13
	D) $\frac{1}{2}$	D) $3/13$
Answei	r: B	Allswei. B
16)	The events A & B are said to be disjoint if $A \cap B$ is	22) A & B are mutually exclusive events the $P(A \cup B) =$
	A) ф	A) $P(A) \cup P(B)$ B) $P(A) + P(B)$
	B) A	b) $r(A) + r(B)$ C) $P(A) + P(B) - P(A \cap B)$
	C) B	D) $P(A) - P(B)$
	D) $A \cup B$	Answer: B
Answei	r: A	
17)	A dice is thrown then the probability to get an even	23) If $A \subset S$ then $P(A') =$
,	number is	A) $1 + P(A)$
	AX 4/7	\overrightarrow{B} 1 - $\overrightarrow{P(A)}$
	A) 4/5 B) 3/5	
	C) 2/3	$(P(A)) = \frac{P(A)}{P(A)}$
	Ď) ½	D) $P(A)$
Answer	r: D	Answer: B
18)	A slin is nicked out of 8 slips numbered from 1 to 8 then	
10)	the probability to get number 4 is	

- The probability that Aslam was not born in a month 24) which begins with the letter "J" is $\frac{3}{4}$, then the probability that he was born in January, June, July is
 - A) $\frac{5}{4}$ B) $\frac{3}{4}$ C) $\frac{1}{4}$ D) $\frac{7}{4}$

С

А

В

Answer:

The probability that Mr. X will clear the exam is 25) $\frac{1}{5}$ & that of Mr. Y is $\frac{1}{2}$. The probability that no one will clear the exam is.

) $\frac{2}{5}$ 3) $\frac{1}{5}$ C) $\frac{11}{50}$ D) $\frac{1}{6}$

Answer:

If $P(A) = \frac{1}{3}$, $P(B) = \frac{1}{3}$ and $P(A\Pi B) = \frac{1}{9}$. Then 26) the value of P(AUB) is.

3 75 91 21 9 A) B) C) D) Answer: