CHAPTER#1:

1) Di	fferentia	te between:						
	i.	Atom and Gram atom						
	ii.	Mole and molecule						
	iii.	Formula weight and molecular weight						
	iv.	Empirical formula and molecular formula						
2) Tł	ne empir	ical formula of a compound is CH ₂ O. If the molecular weight of the compound is 180,						
calcu		the molecular formula.						
3) H	ow many	molecules of water are present in 5.4 grams of H ₂ O?						
4) A	given co	empound contains C = 60%, H = 13.0% and 0 = 27%. Calculate its empirical formula.						
5) Ca	alculate	the volume of oxygen at S.T.P. that may be obtained by complete decomposition of 51.3						
	_	$KCIO_3$ on heating in presence of MnO_2 as a catalyst(At. Mass of K = 39; Cl = 35.5; O = n = 55)						
		$2KCIO_3 \xrightarrow{MnO_2} 2KCI + 3O_2$						
6) De	efine the	following:						
-,	i.	Limiting Reactants ii. Significant Figure iii. Bond Energy						
7) Co	ompare t	the rates of diffusion of the following pairs of gases:						
,	i.	H ₂ and D ₂ ii. CH ₄ and He iii. SF ₆ and SO ₂						
8) 54	gm of c	linitrogen pent oxide (N ₂ O ₅) is decomposed on heating as under:						
ŕ	2N ₂ O ₄	\longrightarrow 4NO ₂ + O ₂ ; Find out the volume of NO ₂ and O ₂ at S.T.P.						
9)) 6		he following by using exponential notation						
-//	ыпршу с	34100+3900+2100						
10 li	n a colle	ction of $24x10^{25}$ molecules of C_2H_5OH what is the number of moles?						
	apter							
1) De	erive Ge	neral Gas Equation.						
		scosity? Give two factors which affect viscosity?\						
3)	Define	e and explain Boyle's Law and Charles' Law						
4) W	hat are	the basic postulates of the Kinetic Molecular Theory? Why do gases deviate from the						
	Ideal I	Behavior?						
5) Ca	alculate	the value of R (gas constant) in two different units.						
6) St	ate and	explain Dalton's Law of Partial Pressures.						
7)		are the main postulates of the Kinetic Molecular Theory? How does it explain the						
	follow	ng properties of gases?						
	Ų.	Diffusibility ii. Compressibility iii. Expansion						
		urface tension? Discuss any two factors which affect surface tension.						
9) 40		f helium gas effuses from a porous container in 20 seconds. How long will SO ₂ gas take						
4.0\		se from the same container? (At Wt : S = 32, He =4)						
10)	Give r	easons for the following:						
	I.	Evaporation is a cooling process. ii. A falling drop of a liquid is always spherical.						

Pressure cooker is used for rapid cooking.

iii.

- iv. The reactions with powdered marble are more vigorous than those with the pieces of marble.
- v. Milk sours more rapidly in summer than in winter.
- 11) Explain why the process of diffusion occurs most rapidly in gases slow in liquids and very slow in solids
- 12) A 500 cm³ vessel contains 2gm of He and 8gm of CH₄. What is the total pressure of the mixture of these gases at -3° C? (Atomic masses H3 = 4, C = 12, H = 1)
- 13) A 100 cm³ gas cylinder filled with chlorine under 160 torr pressure is connected by stop-cock with another cylinder of 400 cm³ filled with nitrogen under pressure of 200 torr. What will be the total pressure when stop cock is opened?
- 14) at 30C 500cm³ of H₂ at 400 torr pressure and one dm³ of N₂ at 600 torr pressure are transferred into a 1500 cm³ flask. Calculate the total pressure of mixture of gases
- 15) 380.0 cm³ of hydrogen gas was collected over water at 23°C and 613 torr; find the volume of dry hydrogen at S.T.P (vapour pressure of water at 23°C = 21 torr)

CHAPTER #3

- 2) Explain the terms:
 - (i) Ionization Potential (ii) Electron Affinity (iii) Electro negativity
- 3) What are the weaknesses of Rutherford's Atomic Theory?
- (b) How have these defects been removed by Bohr in his Atomic Theory?
- 4) Write short notes on any TWO of the following:
 - i. Electro negativityii. Ionic Radiusiii. Pauli's Exclusino Principleiv. Common-ion Effectv. Activation Energy
- 5) Define Radioactivity. Describe the characteristics of Alpha OR Gamma Rays.
- 6) Write down the postulates of Bohr's Atomic Theory and derive the expression of the radius of hydrogen atom.
- 7) What rules and principles are violated in the following electronic configurations:
 - (i) $ls^2 2s^3$ (ii) $ls^2 2p^2$ (iii) $ls^2 3$
- (iii) $Is^2 2s^2 2p^6 3s^2 3p^6 3d^4 4s$
 - (iv) $Is^2 2s^2 sp^6 3s^2 3px 3py^0 3pz^0$
- 7) Write a short note on Radioactivity OR Spectroscopy.
- 8) Starting from K.E. = $\frac{1}{2}$ mv² and P.E = $\frac{-Ze^2}{r}$ derive an expression for energy of an electron in nth orbit.
- 9)) what are cathode rays? Describe the experiment for their discovery writhe their properties what conclusion are drawn form these properties
- 10) How were positive rays generated from cathode experimeny

CHAPTER#4

- 1) Explain the geometry of BeCl₂ and H₂O molecules on the basis of hybridization and electron Pair Repulsion Theory.
- 2) Differentiate between:
 - i. Orbit and Orbital ii. Covalent & Coordinate Covalent Bond
- 3)) What is an Ionic Bond? Explain the formation of NaCl.
- (b) Distinguish between Sigma and Pi bonds.
- (c) Predict the shape of the following molecules on the basis of electron pair repulsion theory:

				<u> </u>		,			<u> </u>			
	i.	H ₂ O				ii.	C_2H_4					
4) Def	ine Orl	bital Hy	bridiza	tion. D	escribe	sp ³ H		ition.				
•	 4) Define Orbital Hybridization. Describe sp³ Hybridization. 5) (a) explain the shape of ethene (C₂H₄) on the basis of hybridization 											
_	in tha s	tructur	o of NI⊾	d on th	o haci	s of ala	ctron n	air ronu	Ilsion the	oorv		
•							-	ith exa		COLY		
,	•		•	d pi bor		JOHU 67	piairi w	IIII GAA	пріс			
		ER #		i pi boi	143						2	
1) a)	State	and ex	plain th	e First	Law o	f Thern	nodyna	mics ar	nd prove	that	work is equal to p Δ V.	
(b)				ormatio								
	Calcu	late the	e heat	of for	mation	of C ₂	H ₂ from	n carb	on and	hydr	rogen with the help of th	ıе
follow	ing dat									_		
i.	2C	+	H_2	\longrightarrow		C_2H_2	Δ Hf =	?		1		
ii.	C_2H_2	+	O_2	\longrightarrow		$2CO_2$	+	H_2O	. (
iii.	С	+	O_2	\longrightarrow		CO_2		ΔH=	- 94.05 I	k cal/	mol.	
iv.	H_2	+	O_2	\longrightarrow		H_2O		ΔH=	- 94.05 I	k cal/	mol.	
2) (a)	State	and ex	plain H	ess's L	aw of	Consta	nt heat	summa	ation and	d give	e its application.	
(b)	Define	e the fo	llowing	terms:				~ (
	i.	Macro	scopic	proper	ties	ii.	Extens	sive pro	perties			
	iii.	Energ	y of Ac	tivation	1							
3) Def	ine the	follow	ing terr	ns:				F				
	i.	Syste				ii.	State			ii.	Surrounding	
4) Wh							-	_			ant pressure 2 x 10 ⁵ /m², i	ts
					-				_		e of system.	
5) 360)0 KJ h						lculate	the val	ue of Δ	E:		
	i.			is kept								
		ii. If the volume is not constant, work of -800 KJ was performed by gas.										
->	iii. If the gas is allowed to expand, the value of work is +5200 KJ.											
6) differentiate:												
Exothermic and endothermic reaction												
7)) a system absorbs 200J of heat from the surroundings and does 120J of work on the surroundings												
by expansion find the internal energy change of the system												
8) Calculate the heat of formation from the following data												
2Na	+	½ O₂	\longrightarrow		Na₂O				$\Delta H = 3$			
Na	+	H ₂ O		\longrightarrow		Na O	H +1/2H		ΔH = -	43.2	k.cal	
Na	+	H_2O			\longrightarrow		2NaO	63. k.c	а			

CHAPTER#6

 $H_2 + 1/2O_2 \longrightarrow H_2O$ ΔH =-68.0K CAL

	<u> </u>								
1))	n a chemical reaction, PCl ₅ PCl ₃ + Cl ₂ , calculate the mole of chlorine produced a								
, ,	equilibrium when 1 mole of PCl ₅ is heated at 250°C in a vessel of capacity 10 dm ³ . (Kc for the								
	eaction is 0.041).								
2)	Explain the term solubility product. What is the criterion for the precipitation from a solution?								
(b)	2								
	Pb(NO ₃) ₂ solution is mixed with 3000 cm ³ solution of concentriaotn 1.5 x 10 ⁻⁸ M.								
3))									
(b)	Discuss the conditions to increase the yields of NH3 in Haber's process.								
•	gm of acetic acid and 46 gm of etheyl alcohol are mixed with each other at constan								
-	ature and are allowed to attain the equilibrium. At equilibrium 58.2 gm of ethyl acetate and 12								
	rater were present, find the equilibrium constant (K _c)								
5) Sta	the law of Mass action and derive the equilibrium constant for								
C \	nA + bB								
•	In a reaction A + B \rightleftharpoons 2C when equilibrium was attained the concentration was [A]=[B]= 4								
	e/dm3 and [C]= 6 moles/dm3.Calculate the equilibrium constant Kc and the initia centration of A and B								
CO	Certification of A and B								
7) \//k	t is solubility Product (K _{sp})? The solubility of AgCl at 25°C is 1.4 x 10 ⁻ gm/dm ³ . what is its								
7, **1	colubility product? (Atomic masses $Ag = 108$, $CI = 35.5$)								
8) wha	is chemical equilibrium illustrate is with the help of graph								
	olubility of AgCl at 25C is 1.4x10-3g/dm3 its molecular mass is 143.5 calculate the molarity of								
	nd solubility product of solution								
•	scribe the relation b/w Kc and Kp								
CH	PTER#7								
	nce the equations by ion-electron method:								
i) Dai	1- 1+ 2n+								
	MnO_4^{1-} + Cl + H \longrightarrow Mn + Cl_2 + H_2O								
	1- 2- 1- 2-								
۵) ۵	. $MnO4 + SO3 + OH \longrightarrow MnO_4 + SO_4$								
2) Exp	ain the following terms with examples:								
2) Do	Hydrolysis ii. Hydration iii. Charge Density								
•	e Solubility and Solubility Product. Should AgCl precipitate from a solution prepared by mixing 400 cm ³ of 0.1 M NaCl and 600								
(b)	$^{\circ}$								
	0.03 M AgNO ₃ ?								
	Ksp of AgCl = 1.6×10^{-10} mole / dm ³								
	e pH. What is the pH of 0.004 mole dm ⁻³ HCl at 25°C?								
5) a)	Vrite notes on any two of the following.								
	Buffer solutions ii. Common ion effect								

S in $Na_2S_2O_3$ iii. P in H_3PO_4 iv.

Mn in MnO₄

6) Find the oxidation number of

Cr in K₂ Cr₂ O₂

ii.

- V. N in NCl_3 vi. 0 in OF_2
- 7) Define Electrode Potential. How is the electrode potential Zn determined?
- 8) Find the molarity of 0.5 gm of NaOH in 250 cm³ of aqueous solution.
- 9)) how is buffer solution is prepared

Find the oxidation number of:

Cr in K_2CrO_7 *S in $Na_2S_2O_3$ *P in H_3PO_4

10) Ph of a solution is 8.4 calculate the H⁺ lon and OH⁻ lon concentration

) 3.86g of NaOH is dissolved in 2.5dm3 of solution find its molarity

CHAPTER#8

- 1) Determine the initial rate of the following reaction at 303°C in which is Rate constant is 8.5 x 10⁻⁵ lit mol⁻¹ sec-1 Initial concentration of the reactions is 9.8 x 10⁻² mole/lit.
- 2) Discuss the effects of change in (i) concentration and (ii) surface area, and (iii) the catalyst on the rate of a chemical reaction.
- 3) What is the Rate of chemical reaction?
- (b) Derive an expression for the determination of the rate constant of reaction.
- (c) What is Energy of Activation?
- 4) The rate constant for the decomposition of nitrogen dioxide.

 $2NO_2$ \longrightarrow $2NO + O_2$ is 1.8×10^{-8} dm³ mole⁻¹ S⁻¹.

What is the initial rate when the initial concentration of NO₂ is 0.50 M?

- 5) Define the following terms:
 - i. Rate of reaction ii. Order of reaction iii. Catalyst iv. Activation energy v. Specific rate constant
- 6)) Distinguish between the following:
 - i. Rate and velocity of a reaction ii. Rate constant and rate expression
 - iii. Positive catalyst and Inhibitor
- 7) For a chemical reaction A B the threshold energy of reaction is 31 KJ/mol. The average internal energy of A is 12 KJ/mol; calculate the activation energy of A.
- 8) Write the rate expression. Find the value of rate constant and determine the order of reaction using the following data.

[NO] [O2] Rate

- i. $0.1M \ 0.1M \ 2 \times 10^{-3} \ M \ sec^{-1}$
- ii. 0.2M 0.1M 8 x 10⁻³ M sec⁻¹
- iii. 0.1M 0.2M 2 x 10⁻³ M sec⁻¹
- 9) write notes on any two of the following:

Fast reactions

Slow reactions

Moderate reactions

Positive catalyst

- a) define and explain activation ENERGY
- 10)) find order of reaction

Sr. No.	[A]	[B]	Rate
1.	0.1	0.1	8 x 10 ⁻⁴

2.	0.2	0.1	16 x 10 ⁻⁴
3.	0.1	0.2	16 x 10 ⁻⁴

